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This paper describes a class of stochastic stabilizing policies within asset price regimes
that can be easily incorporated into the framework of regime switching recently proposed
by K. A. Froot and M. Obstfeld. In contrast to previous treatments of market-driven
fundamentals within the regime, authorities stochastically counteract movements in
these fundamentals before asset prices reach boundary points. This paper describes
how the stabilizing intra-regime intervention policies can be used to characterize the
behaviour of monetary authorities before fixing an exchange rate, as in the cases
studied by R. P. Flood and P. Garber. An intervention policy within target zone bands
consistent with empirical evidence is also a member of this class of policies.
Furthermore, the stylized features of these intervention policies may be matched to

actual data in a natural way.
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SUMMARY

Recent research has examined the behaviour of asset
prices under monetary policy regimes that impose
boundaries on the price movements. While this
framework can be used to examine asset prices in
general, the research has largely focused on
exchange rate behaviour. There are two basic types
of these exchange rates regimes. In the first, the
monetary authorities target the exchange rate with-
in bands. Examples of this type of regime are the
European currencies under the EMS or the dollar
following the Louvre Accord. In the second, the
monetary authorities allow the exchange rate to
float until it reaches the level where the authorities
want to fix it, such as for the pound before Britain’s
return to gold standard in 1925. The first type of
regime is studied in the ‘target zone’ literature,
while the latter type is examined by Flood and
Garber (1983), Froot and Obstfeld (1991a,b), and
Smith (1991).

Much of this literature characterizes the market
demand for the asset price with simple processes
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that assume no intervention until the price hits
given levels. In the target zone case, this level is the
target band; in the floating-to-fix case, it is the
targeted fix price. However, the assumption appears
counterfactual. Under the EMS and following the
Louvre Accord, central banks intervene to support
the current well within the bands. In the period
leading up to Britain’s fix to gold, official interven-
tion in the form of capital controls attempted to
keep the pound from weakening.

Therefore, in this paper, I introduce processes for
incipient asset demand that allow for official
intervention within the boundaries of the policy
regime. In contrast to existing literature, the process
depends naturally upon a probability of interven-
tion function. For the case when the authorities
allow the exchange rate to float to a level where it
will be fixed, the intervention within the bands
stabilizes the exchange rate around current levels.
As the exchange rate hits the new fix level, the
exchange rate becomes forever stabilized at the new
fixed rate. For the case of targeted bands, I show
that intervention within the bands induces, not only
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mean-reversion in the exchange rate, but stabilizing
behaviour. These features are more consistent with
actual exchange rate behaviour within target zones
than assuming no intervention except at the
boundaries.

Finally, I show how this framework can be
applied to data. The framework treats intervention
magnitudes as an unobserved latent variable. Given
data on days when interventions take place, the
probability of intervention can be estimated. These
estimates can be used to evaluate the exchange rate
behaviour and to ask whether it is consistent with
the model.

INTRODUCTION

Economists have recently begun to examine the
effects of prospective shifts in policy regimes upon
forward looking variables. Froot and Obstfeld
(1991a) demonstrated how a general continuous
time framework can be incorporated to yield
tractable solutions. Using this framework, they
provided a simple and intuitive solution to the
problem studied by Flood and Garber (1983) of
Britain’s return to a gold standard.! Another regime
that can be examined within this framework is the
policy of targeting exchange rates or interest rates
within given bands.”> Examples of band-type re-
gimes are the current European Monetary System,
the system of managed float instituted by the
Louvre Accord in 1987, and the US policy of
targeting interest rates in the 1970s.2

The solutions found by Froot and Obstfeld
(1991a) are particularly simple when the determi-
nants of the asset prices are assumed to follow
Brownian motion. In the case of the return to a fixed
exchange rate regime, this assumption implies that
the monetary authorities allowed the exchange rate
to fluctuate freely until hitting the pre-war level. In
the case of bands on targeted variables, it is
assumed that the authorities do not intervene until
the exchange rate hits the target band. The tract-
ability implied by these assumptions has contrib-
uted to their widespread acceptance.

The acceptance of the tractability assumption that
asset price determinants follow Brownian motion
within regimes can lead to incorrect interpretations
of observed asset price behaviour, however. For
example, when authorities target exchange rates or
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interest rates within bands, they often intervene to
keep rates from reaching the bands. Thus, even if
market-determined fundamentals followed Brow-
nian motion, intervention by monetary authorities
would distort this process. The combined effects of
market fundamentals and intervention therefore
imply different exchange rate behaviour within
the regime. Similarly, historical accounts of Britain’s
return to gold suggest that British authorities did
not allow free gold movements before the return.
Rather, in the period before the return to gold,
capital flows were restricted and private holdings of
gold were discouraged m an attempt to stabilize
exchange rate movements.*

In this paper, I describe a class of discrete time
intra-regime policies that can be approximated by
continuous time diffusion processes. These contin-
uous time processes allow for simple solutions as in
the Froot and Obstfeld (1991a) framework. In
addition, these characterizations of policy have
several advantages over alternatives in the
literature. First, the class of policies takes as given
that market-determined fundamentals follow Brow-
nian motion. The intervention policy simply distorts
the evolution of market fundamentals. This treat-
ment allows for an easy comparison to the standard
literature with Brownian motion fundamentals.’
Second, the implications of these policies provide
realistic distributions for both fundamentals and
asset prices. For example, while intra-regime Brow-
nian motion for fundamentals implies that exchange
rates within target bands should have bi-modal
distributions concentrated at the bands, empirical
evidence has shown that they tend to be unimodal
and concentrated near the middle of the band.®
Third, the solutions obtained with this class of intra-
regime policies provide stylized features that can
easily be related to intervention data where the
magnitudes are frequently unobserved. For exam-
ple, controls before returning to a fixed rate may
prevent capital flows. In the presence of capital
controls, these magnitudes of the flows are un-
observed. With stylized forms of intra-regime
intervention as described below, these magnitudes
may be treated as unobserved latent variables, and
can be incorporated into empirical studies in a
straightforward manner.

The plan of the paper is as follows. The next
section describes the standard asset pricing model
in the presence of regimes when intra-regime
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intervention is assumed to follow Brownian motion.
The section after describes the regime switch to a
permanent fix. Capital flow restrictions and other
interventions are imposed with greater frequency as
the exchange rate nears the fix parity. The following
section describes the regime where asset prices are
reflected within bands. Interventions attempt to
stop movements in asset prices away from targeted
levels and hence away from the bands. Empirical
applications of both cases as well as extensions to
other regimes are also described.

THE ASSET PRICING MODEL WITH NO
INTRA-REGIME INTERVENTION

To illustrate the importance of intra-regime inter-
vention, 1 begin with a brief summary of the
standard model without intra-regime intervention.
For the purpose of illustration, I will follow the
notation and methodology of Froot and Obstfeld
(1991a) in this section.

The logarithm of the spot exchange rate at time
t,x(t), depends upon a linear combination of
macroeconomic fundamentals summarized by the
scalar, k(t), and the expected change in the spot
exchange rate

x() = k() + aE{dx()|Q0)}/d1. )

In Equation (1), « measures the rate at which traders
discount the future. In monetary models, this
parameter is the semi-elasticity of money demand.”
E{|Q(n)} is the expectations operator conditional
upon information available at time ¢, defined as
Q).

In a rational expectations equilibrium (with no
speculative bubbles), the solution to this equation is
given by

00
x(t) = oc_lj e E{k(s)|Q2)} ds. )
t
Thus, Equation (2) says that the current exchange
rate depends upon the expected future path of its
determinants, summarized in k(f), where the in-
formation in Q includes both the process of market-
determined fundamentals and the policy regime
followed by the authorities. In other words, to
determine the exchange rate, traders condition their
expectations of future fundamentals upon (a) the
movements of fundamentals within the boundaries
of the regimes; and (b) the behaviour of the
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authorities at the boundaries. For future reference,
I will call behaviour within the boundaries ‘intra-
regime’ and behaviour at the boundaries ‘regime’.

An intra-regime process that provides tractable
solutions is

dk(f) = udt + o dz(2), 3

where p is the deterministic drift of %, dz is a
standard Wiener process, and ¢? is the variance of k.

To get the solution subject to boundary condi-
tions, I first assume that the family of solutions that
solve Equation (2) conditional on Equation (3)
can be written as a twice-differentiable function
x = G(k). Then applying Ito’s Lemma to Equation
(3) to solve for E(dx|W) in Equation (1), this family
of functions can be written

G(k) = k + auG' (k) + (aa?/2)G" (k). 4

Equation (4) is an ordinary second-order differential
equation in k& and therefore has a closed form
solution conditional upon two boundary condi-
tions. The solution in the family of solutions,
Equation (4), that satisfies these boundary condi-
tions is defined as S(k(£))=x(¢).

Consider two sets of boundary conditions corre-
sponding to the two different regimes discussed
above. The first regime is a switch from a floating
exchange rate system to a fixed rate system. In this
case, when the exchange rate hits a given value, x*,
it will remain fixed forever (‘a’ stands for absorb-
ing.) Therefore, at this point, the expected change in
the exchange rate is zero so that by Equation (1),
x? = k2, where &? is the fundamental level determin-
ing x%; i.e. x¥* = S(k*). The second regime is a band
policy where exchange rates are reflected with
infinitesimal interventions at boundaries k, ¥ where
k <k. Therefore, at the boundaries, G'(k) =
G'(k) = 0. Froot and Obstfeld (1991a,b) show how
the solutions can be derived from these boundary
conditions.

While assuming no official intervention except at
the boundaries provides simple closed-form solu-
tions, it suggests that governments take no action to
offset private capital flows except at the boundaries.
In some cases, this assumption may indicate
misleading implications for the behaviour of asset
prices and their determinants. An example of these
implications will be demonstrated below in the case
of intervention around bands. Before examining this
case, however, I first consider the case of a switch
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from a float to a fixed rate system examined by
Flood and Garber (1983).

INTRA-REGIME CONTROLS BEFORE A
SWITCH TO FIXED RATES

The outbreak of World War I disrupted the world
currency system previously fixed to gold. After
intermittent attempts to fix the pound, the British
floated the pound in 1919. Following the war,
Britain began adjusting financial markets in pre-
paration for the return of the pound to a fixed rate
system. In 1925, the pound was fixed at its pre-war
parity of $4.80/pound sterling. Other examples of
switches in exchange rate regimes from floating
rates to fixed rates include the Greenback dollar
following the Civil War as well as some European
currencies following the Napoleonic Wars.

Intra-regime policy is usually treated as laissez
faire in the literature so that simple processes for
money supply can be assumed for tractability.®
However, historical accounts suggest that before the
fixings, the authorities employed capital controls.
For example, prior to the return to gold, the British
authorities placed restrictions on movements of
gold and prevented private holdings of gold. A
major concern of British officials appeared to be that
the pound would become unstable.” In an attempt
to counter this instability, controls upon movements
and ownership of gold were intermittently placed
and removed.

These accounts suggest several aspects of the
official intervention within the pre-fix regime. First,
capital controls were aimed at stabilizing currency
movements. Second, the occasional nature of these
restrictions indicates that traders in international
capital markets perceived the likelihood of official
intervention as uncertain. Third, these controls
became more common as the pound approached
its pre-war parity level and the British authorities
became more committed to returning the pound to
a gold standard. Fourth, during periods of controls
and other official intervention, some amounts of
private excess demand for gold were unmet over
some intervals of this period.

I next show that by incorporating the authorities’
response to exogenous movements in money
demand, I can obtain a stylized characterization of
the movement in incipient excess demand in the
foreign exchange market. Based upon this charac-
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terization, I then consider the effects in equilibrium
arising from official intervention. For this purpose, I
follow the standard assumption that private excess
demand for foreign exchange follows Brownian
motion, as given in Equation (3). Given this process,
an intervention policy placing capital restrictions
before the fix should contain the basic features
described above: (a) the policy should offset
incipient movements in private fundamentals to
stabilize the exchange rate; (b) the intervention
should appear uncertain to traders; (c) the like-
lihood of intervention should increase as the
exchange rate approaches its fix.

To describe these restrictions, I discretize the state-
space of fundamentals and write the fundamentals
process in (3) as a binomial process. Thus, let £
range over values such that

ki —k=¢ Vi, 5)

where starting at k;, a small period of time 7 later the
following would be observed

k;_, with probability p,
k;., with probability g,

where  p = (1/2)(1 — (ut/8)); g = (1/2)(1 + (u1/%))-
Now suppose that the authorities intervene to stop
movements in fundamentals with some probability.
Define the fundamentals process, distorted by
fundamentals, to be f(¢). Then, the probability of
intra-regime intervention can be written

n(f), forf € (f,.f), 7(f) > 0,

where 1 is the level of fundamentals at the fix rate,
x® and f is a lower support of the probability
distribution (which could be —cc). Thus, as funda-
mentals reach an upper level, intervention occurs
with certainty.

Since official interventions are directed toward
offsetting capital movements, I assume for simpli-
city that when interventions occur, they completely
offset the excess private demand for currency. Then,
if at time t,k; =f;,t periods later the following
would be observed:

fi—1 with probability p(1 — =( f)),
Jfiy1 with probability ¢(1 — n( £)), 6)
f; with probability n( f;).

In other words, fundamentals are allowed to move
with probability 1 —z(f), but are restricted with
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probability #( f). In the event that fundamentals
reach the upper level, /2, fluctuations are offset with
probability one. In this case, the fundamentals
process is ‘absorbed’ at the new fixed exchange
rate level, x2.

This discrete time process may be approximated
as a continuous process by taking the limit as the
interval of time, 7, becomes small. For this purpose,
I consider the changes in fundamentals over the
interval of time 7, and index this process as
cJoeSer forr oS 1 then define the family of
sigma algebras generated by this sequence as ,Q,,.
And finally I create the continuous time process as:
Ji = fee If 1t exists, the limit diffusion has the
form:'°

df = a(f)dt + b(f)'? dz, 7

where
a(f) = li_lgt_lE{(rﬁn+l)t _1f;n)lfgm}!

b(f) = B E( Sy = fod)1e e

The appendix shows that the limit diffusion is
described in the following proposition.

Proposition 1: Within the boundaries, the limit
diffusion of the fundamentals process, Equation (5),
distorted by the intra-regime intervention policy,
Equation (6), is

df = u(1 — (MDAt + (1 — (/NP dz.  (8)
The conditional mean of fundamentals is
Edf|f) = u(l — =n(f)),

while the conditional variance is

B(@f)’1f) = o*(1 = 2(f).

The intuition behind this result is straightfor-
ward. When no restrictions or intervention occur,
fundamentals evolve according to Equation (3) with
constant conditional mean, p, and variance, o2.
However, with the intervention policy, Equation (6),
the authorities will intervene to offset capital
movements with greater frequency. With probabil-
ity m(f) capital movements and, hence, the ex-
change rate are stabilized and the conditional mean
and variance are zero. However, with probability
(1 — n(f)), these variables are allowed to move.
Since n(f) approaches one at the boundary, it is
clear that both the conditional mean and variance
approach zero as the probability goes to one.
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Since the distribution of f has an absorbing
barrier at /2, the asymptotic distribution of f is a
mass concentrated at the fixed rate fundamentals
level, /2. To evaluate the behaviour of fundamentals
before reaching the fixed rate, however, I consider
the distribution of f if its upper boundary occurred
before the absorption point f2."' The appendix
shows that this distribution is given as described
in the following proposition.

Proposition 2. The distribution of fundamentals
given by Equation (8) will asymptotically be
concentrated at a mass point f®. The distribution
of fundamentals given by Equation (8) with a
(reflecting) boundary f’ <f* and starting (non-
absorbing) state f is given by

P(S) = Aexp{2u/a®) f}/(1 = n(f)) for u#0

=A4/(1 ==n(f)) forp=0,
where 4 = [0? ff’(exp{(Zu/ )x}/(1 — n(x))dx].

Figure 1 depicts this distribution for the case of a
truncated standard normal distribution where the
probability n(f) is truncated at 0.65."> This dis-
tribution is based upon two assumptions about the
drift and variance parameters, /6> = 0 and 1. As
the figures show, the fundamentals are concentrated
near the upper boundary. This increasing concen-
tration occurs even though the absorbing barrier has
not been reached because the fundamentals process
becomes stabilized with greater frequency as
fundamentals approach /.

For comparison, the figure also depicts the
analogous distribution for fundamentals when they
follow Brownian motion in the band. As the figure
demonstrates, when y =0 the fundamentals are
uniformly distributed. When u =1, the process is
concentrated near the band but with less density.

Having described the process in the presence of
intra-regime intervention, the exchange rate can be
solved in the Froot-Obstfeld framework given
above. First, I assume that the family of solutions
is given by a twice-differentiable function, G(f).
Then, I apply Ito’s Lemma to this function using the
process given in Equation (8) to obtain E{dx(s)| W (r)}.
Next, I substitute this expression into the exchange
rate Equation (1), implying

G(f) =1 + ap(l = ()G (f) + ac*(1 = 2(NG"(S).
(10)
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Figure 1. Fundamentals distribution before reaching a
fixed rate regime.

As before, this equation is a second-order differ-
ential equation in f, although the coefficients on the
first and second-order terms are now functions of f
as well. For the case of a fixed exchange rate
boundary, the unique solution to this differential
equation will be the solution that imposes x* = /2.
For given functional forms for the probability =( f),
this equation can be solved numerically.

Figure 2 describes the solution for the case where
4 > 0 and where = is a truncated normal distribu-
tion. For comparison, this solution is first compared
with the solution in Froot and Obstfeld (1991a)
assuming two absorbing barriers, x*( /%) and 2(f).
The probability of intervention increases from f?
until reaching /. As the figure shows, the stabiliz-
ing intervention tends to keep the exchange rate
closer to the 45% line at every level of fundamen-
tals."® The intuition for this result is straightforward.
As fundamentals approach x*, the probability that
intervention will stop the movement in fundamen-
tals increases. Thus, traders expect a lower condi-
tional mean growth rate of fundamentals. They
therefore bid up the value of domestic currency
relative to the no intra-regime intervention case. As
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a result, the domestic currency is more valuable. On
the other hand, as fundamentals approach the lower
bound, the likelihood of intervention approaches
zero. In this case, the exchange rate approaches the
solution as in the case of the no intra-regime
intervention case. More realistically, when
S? = —o00 so that the fix only occurs at the point
f?, the solution is as described in the dashed line in
the figure.

The probability density of exchange rates may be
derived from this solution together with the
fundamentals density in Proposition 2 since
through the change-of-variable formula: p(x) =
p(f)/X(f). As is evident from Figures 1 and 2, the
exchange rate distribution would be concentrated
near the fixed exchange rage point if y > 0.

INTRA-REGIME INTERVENTION WHEN
RATES ARE TARGETED WITHIN BANDS'

Another regime that has important practical appli-
cations arises from a policy that targets rates within
given bands. Regimes of this type include fixed rate
systems when central banks allow exchange rates to
fluctuate within given bands, managed float sys-
tems where the bands are not official such as G-3
intervention following the Louvre Accord, and
policies aimed at targeting interest rates within
fluctuating bands such as in the 1970s.

The solutions to asset prices when fundamentals
follow Brownian motion everywhere except at the
boundary regime points are given by the Froot-
Obstfeld solution (Equation (4)). However, empiri-
cal evidence for many applications of target band
policies suggests that asset prices are almost never
allowed to float freely within the band. For
example, within the European Monetary system,
frequent interventions have attempted to keep
exchange rates away from the boundaries.

Empirical evidence suggests at least two features
of this intervention policy. First, most interventions
are directed toward keeping the exchange rate from
moving away from the targeted level. In other
words, when the currency depreciated, the central
bank bought domestic currency, and vice versa.
Second, fewer interventions were directed toward
stabilizing movements in the exchange rate. In this
case, interventions tried to stop movements in the
exchange rate regardless of its direction.'
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Figure 2. Exchange rate solutions for a switch to fixed rates.

Using the same approach as above, I consider the
stylized effects upon fundamentals when traders
view the interventions by monetary authorities as
uncertain. As above, I assume that the market-
determined fundamentals process follows the
Brownian motion in Equation (3). Facing this
process of fundamentals, the authorities primarily
intervene to offset movements away from the target
level, but also occasionally wish to stabilize the
exchange rate at the current level. A representation
of this policy is to specify: ‘when fundamentals move
away from the target level, offset with probability
n¥; when fundamentals move toward the target
level, offset with probability n9, where n* > 74’

More formally, if I define the target level as
xT(fT), then a characterization of this rule is to
assume that the probability of intervention increases
with the deviation of f from fT. Furthermore, if I
define the bands around the target rate as (f r,f),
this probability can be assumed to equal one at
these bands. At these bands, the probability of a
reflecting intervention equals one, bringing the
fundamentals back inside the bands. Finally, the

probability function should ensure that the prob-
ability of movements away from the target level, /T,
is offset with greater frequency than movements
toward the target level.

I incorporate these features into the following
stylized intervention policy summarized by a
probability function. In the case where the bands
are symmetric, I define this probability of interven-
tion as

(| f —fT)), where @’ > 0,f € (f*.f).

This function implies that the probability of inter-
vention increases until it reaches the bands.

The essential features of the intervention policy
described above can be captured with this specifica-
tion. For example, suppose that f > fT. Then I
characterize the intervention process and its effect
upon the market-determined fundamentals process
by writing the process in terms of the discretized
state-space representation given in Equation (5). If
at time ¢, k; = f;, © periods later the following would
be observed:
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fi_y with probability' p(1 —=(fi_y)),
Jix1 with probability g(1 — n(f,,)),
J; with probability pn( f;_,) + gn( fi11))

Since © is increasing in f, the probability of
intervening in the case of a movement away from
the target, n(f,;), is less than the probability of
intervention when moving towards the target,
n( f;-1)- Thus, the probability of intervention in the
case of movements away from the band is
" = n( f;,,), while the probability of intervention
in the case of movements toward the band is
nd = n(f,_,). Clearly, then nd < 7%,

Though subtle, this distinction of the targeting
probability from the absorbing barrier probability
case yields important differences between the
distributions of exchange rates. Since interventions
to counteract movements away from the target
occur more frequently than interventions to coun-
teract movements towards the target, the intra-
regime intervention induces mean-reverting beha-
viour upon the asset price. This mean-reverting
behaviour was absent from the intervention policy
in (6) aimed at stabilizing the exchange rate alone.

To formalize the process, I make the probability
function a continuous function of f for all
fe(f, .J). A differentiable transformation of the
arguments of |f —f7| is useful for this purpose.
Define this transformation as of b( f; fT), where b is
everywhere continuous and differentiable, b is a
monotonic  transformation of |f—-fT|, and
sign(f —fT) = sign(db/df).”® In this case, the
probability may be rewritten as n(b(f;f")). For
simplicity, I subsume the target fundamental argu-
ment /T in the discussion below and simply write
n(f) = nb(f; ) Y

To see this more clearly, I approximate this
discrete process with a continuous time limit
process. For this purpose, I consider the changes
in fundamentals over the interval of time 7, indexed
as before: . fy,.fesefoes - -scfur- | then create the
continuous time process as: . f; =, f,.. If it exists,
the limit diffusion has the form given in (7). The
appendix shows that this limit diffusion is described
in the following proposition.

(11

Proposition 3: Assuming =n(f) is continuous and
differentiable everywhere on (f ’,f) with
(dn/df) # 0 at boundaries, the limit diffusion of
the fundamentals process, Equation (3), distorted by
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the intra-regime intervention policy, Equation (11),
is
df = {u(1 ~n(f))—o*(dn/df)} dt
+o(1 —n(NH? d.
The conditional mean of fundamentals is

Edf1f) = u(1 — n(f)) — a*(dn/df),

while the conditional variance is

E(dN?1f) = 6*(1 — n(f)).

This process has a straightforward and intuitive
interpretation. The first term in the conditional
mean depends upon the drift in the private market
fundamentals. As for the stabilizing intervention
described for the return to a fix, the expected drift
equals the drift in the absence of intervention, y,
multiplied by the probability of no intervention,
1 — n( f). This component of the conditional mean is
the same as that of the stabilizing intervention
policy described in Proposition 1. However, inter-
vention policy within the band also contains an
additional term given by ¢?(dn/df). This term
reflects the fact that interventions to keep the
exchange rate from moving away from the target
level are offset with greater frequency than inter-
ventions when the exchange rate moves towards
the target. The local difference between these two
probabilities is the gradient at f,(dn/df). The
expected effect upon the fundamentals depends
upon the variability of fundamentals ¢? within the
time interval, 7. Since (dn/df) is positive when
f>fT and negative when f <fT, this policy
induces a mean-reverting effect upon the funda-
mentals process.

This mean-reversion generates a clustering of
fundamentals within the band as the following
proposition shows.

(12)

Propostion 4. The asymptotic distribution of funda-
mentals given by Equation (12) is

(f) — A eXP{(Zﬂ/Uz)f}(l - 7T(f)) for H # 0,
P40 =0 for 1 =0,
(13)
[02 [ (exp{(2u/a®)x}(1 — n(x))dx].
Figure 3 depicts this distribution in the upper

panel when the probability is umformly distributed
on f*.f, and where b= (f—fT). As another

where 4 =
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Figure 3. Fundamentals distribution within a target band

example, the second panel shows the distribution
when the probability is logistically distributed with
b=|f —f"|.'® The lower panel depicts the prob-
ability for the standard case where fundamentals
follow Brownian motion within the band. As the
figure shows, the fundamentals process contains a
mode at the midpoint of the band when 4 = 0. When
u # 0, the distribution is asymmetric in both cases.

I can now solve the exchange rate using the steps
as above. Assuming a family of solution functions,
G(k), as before, I apply Ito’s Lemma to this function
using the process in Equation (12) to obtain the
expected change in the exchange rate. Substituting
this expression into the exchange rate, Equation (1),
yields

G(f) =f +olu(l — n([)) — ¢*(dn/dNIG'(f)
+aa*(1 = (NG f).

As for the other families of solutions, Equation
(14) is a second-order differential equation that can
be solved given a probability function, n(f), and
two boundary conditions. If the target zone regimes
are fully credible, then traders will expect the

(14)
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exchange rate change at the bands to be zero. Thus,
boundary conditions are provided by the condition
that G'(fM) =G (f) =0.

Figure 4 depicts the exchange rate solution with
and without intra-regime intervention for the case
of u=0. Since intra-regime interventions offset
movements in fundamentals away from the band,
the future path of fundamentals is expected to be
concentrated near the target fundamentals level.
Therefore, the exchange rate is, on-average, closer to
the target level for every given level of fundamen-
tals with intra-regime intervention than in the
standard case."

As before, I combine the information from the
distribution of fundamentals in Figure 3 and the
exchange rate solution in Figure 4 to derive the
exchange rate distribution from: p(x) = p( f)/x'(f).
The implications for the empirical distribution of
the exchange rate can be quite different from the
standard model. In the standard model, the
distribution is U-shaped with the mass of the
distribution concentrated at the bands. With intra-
regime intervention, however, a mode is concen-
trated at the centre of the band, although exchange
rate observations are also clustered near the bands
in the asymptotic distribution.

Figure 5 depicts this distribution for the exchange
rate with interventions within the band. Although
the exchange rate distributions have very fat tails,
the distribution is concentrated in the centre of the
band. Intuitively, intervention in fundamentals
concentrates exchange rates near the centre of the
band and tends to keep exchange rates from nearing
the band. In the infrequent events when the
exchange rates near the bands, they are prevented
from leaving the band so that they cluster at the
boundaries. This clustering near the boundaries is
the usual reason for the U-shaped distribution of
exchange rates. In the case of intra-regime interven-
tions, exchange rate observations in this part of the
distribution can be less likely than at the midpoint.

To assess how likely exchange rates are to stray to
the boundaries in the presence of intra-band
intervention, Lewis (1991) conducted Monte Carlo
experiments of the behaviour of fundamentals and
exchange rates under various assumptions about
the probability of intervention. These experiments
show that intra-regime intervention tends to keep
the exchange rate away from the bands even in
large samples. For example, a reasonable approx-
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Figure 4. Exchange rate solutions for a target band.

imation of the observed component of the exchange
rate distribution in large (but not infinite) samples,
is the range depicted in Figure 5 as x™ and x™.
Therefore, in reasonably sized samples with intra-
band intervention, exchange rates may not be
observed at the boundaries at all. This implication
is consistent with empirical observations of ex-
change rates within the European Monetary System
as well as other band regimes.?

EMPIRICAL APPLICATION OF INTRA-
REGIME INTERVENTION

In the analysis above, I demonstrated that some
discrete time intervention policies that characterize
actual policy aimed at stabilizing rates have
continuous time approximations. These approxima-
tions allow for easy calculation of exchange rates
conditioned upon expected future policies both
within the regime and at the boundaries.

In addition to the easy comparisons between
intra-regime interventions and existing results,
assuming Brownian motion, these processes allow
for straightforward comparison with actual inter-
vention data that is frequently dichotomous.

Returning to Fix

The solution when the authorities will fix the
exchange rate in the future was described in Figure
2 and Equation (10). However, the effects of
intervention upon actual capital flows are often
difficult to detect since these flows are restricted.
For example, prior to the return to the gold, the
British authorities intermittently placed various
restrictions upon gold movements because they
were concerned about destabilizing influences from
arbitrage between New York and London?’.
Assuming that these restrictions were tempor-
arily stabilizing, however, one can approximate the
effects upon fundamentals by treating these inter-
vention policies according to the intervention rule in
Equation (6). In this case, the empirically implied
exchange rate solution for Equation (10) can be
obtained in the following way. First, collect data on
months (or weeks) when restrictions were placed on
capital flows. Second, based upon these data,
estimate a probability of intervention function,
n( f), using data on fundamentals. Alternatively, if
there is no reliable candidate measure of funda-
mentals, the equilibrium relationship between x( f)
and f can be used to estimate n(f) = n(G!(x)).
Next, using the empirical estimate of n, together
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Figure 5. Distribution of exchange rates with interventions within target bands.

with given values of the exogenous parameters, a,
and g, calculate the solution given in Equation (10).
Solving this function requires specifying a bound-
ary condition, x*. This boundary will likely be
available from ex post knowledge of the fix, but may
also be the point where n = 1.

Since these solutions depend upon the exogen-
eous parameters, sensitivity analysis may also be
used to examine how these solutions vary with the
parameters. These solutions may likewise be com-
pared to actual data on exchange rates.

Target Zones

An alternative and timely application is the analysis
of interventions within the bands of an official
targeted band. For example, much of the interven-
tion within the European Monetary System occurs
inside the official target bands. In this case, it is also
natural to consider intervention as an unobserved
variable, since these magnitudes are generally not
known to traders in the market.

One can evaluate the exchange rate solution,
however, assuming that these restrictions were
temporarily stabilizing, and generally kept ex-
change rates from moving too far from their target

levels. Thus, the effects upon fundamentals may be
approximated by treating these intervention policies
according to the intervention rule in Equation (11).
In this case, the empirically implied exchange rate
solution for Equation (14) can be obtained following
similar steps as above. First, collect data for days
when central banks are observed intervening,
including possibly whether inverventions are do-
mestic currency sales or purchases. Second, based
upon these data, estimate a probability of interven-
tion function using either fundamentals or exchange
rates as explanatory variables. Third, using the
empirical estimate of n( ), together with given
values of the exogenous parameters, a, 4 and o,
calculate the solution given in Equation (14). In this
case, solving this function requires specifying the
target bands, x*,¥. In cases where the bands are
official and known, these bands will be known.
However, in cases where bands are not known, the
probability functions can help tie down these
boundaries. Lewis (1995) provided an example of
this latter case for the Group of 3 during the period
following the Louvre Accord. As for the fixed rate
case, the empirical fit for this solution may be
evaluated by conducting sensitivity analysis with
respect to the exogenous parameters.
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EXTENSIONS OF INTRA-REGIME
INTERVENTION POLICIES

The intra-regime intervention policies have been
discussed above in the case of two regimes where
the boundary conditions are known and constant
over time. However, other regimes have been
considered in recent literature on target zones. For
example, Bertola and Caballero (1992) assumed that
when the fundamentals process reaches the upper
boundary, x*, the authorities devalue with prob-
ability & to push the exchange rate into the middle
of the next band. Alternatively, with probability
(1 — h), they push the exchange rate back inside the
band to the central parity level. Similarly, when the
process reaches the lower boundary, x*, the autho-
rities revalue with the same probability or else push
the exchange rate back to the central parity level
inside the band.

The solution described in Equation (14) can easily
be used to generate a similar regime. A given pair of
the probability of realignment at the bands, # and a
size of realignment, ¢, provide two boundary
conditions with which to calculate the unique
solution to Equation (14). As Figure 1 shows, this
solution concentrates the fundamentals process, and
hence the exchange rate near the centre of the band.
Therefore, it is not necessary to assume that the
magnitude of the jump must be large, as Bertola and
Caballero (1992) do.

Another set of solutions is considered by Bertola
and Svensson (1993). They incorporate the realign-
ment state into the exchange rate solution as an
additional state variable. The intra-regime funda-
mentals process in Propostion 3 could be incorpor-
ated into a solution of this type to allow for
intervention within the bands as well as at the
bands.

CONCLUDING REMARKS

In this paper, I have described a class of discrete
time processes that may be viewed as the market-
determined fundamentals process after being dis-
torted by stabilizing intervention policies. These
processes are shown to have simple single-state
continuous time approximations that allow for easy
solutions in the framework described by Froot and
Obstfeld (1991a). An important feature of these
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processes is that they generate plausible distribu-
tions for the behaviour of the fundamentals and,
thereby, the exchange rate. These distributional
implications are closer to the evidence found in
real-world applications.

Also, in contrast to other mean-reverting pro-
cesses for fundamentals, these processes can be
easily combined with empirical observations of
official interventions. The magnitudes of these
interventions are typically unobserved by market
participants and could be considered latent vari-
ables. Thus, the likelihood of intervention can be
estimated and incorporated into the analytical
solution of the exchange rate in a natural way. As
such, this approach can be used to evaluate
empirically the implications of the exchange rate
solutions provided by the model.

While I have focused upon examples from
‘credible’ regimes with constant boundaries, the
processes can easily be incorporated into alternative
regimes including probabilities of realignments.
Also, the processes can be incorporated into
exchange rate solutions involving more than one
state variable. Thus, these processes should prove
useful for both theoretical and empirical applica-
tions of stochastic regime switching.

APPENDIX

Proof of Proposition 1

As described in the text, the limit diffusion will have
the form of Equation (7) if it exists. Use the process
of fundamentals evaluated at intervals 7, f;, ..., . fues
and the continuous time process: . f; =, f,,. Also,
define the standard Weiner process observed over
these intervals as, ,z_1);1¢ Zp, - --» the process can
be written?

ofur + 0:Zui1y. + #r when no intervention,
©J(n+)e when intervention.

The conditional mean is

E[t_ : (tﬁn+])t _tfnr)]-rgan

where Q.. is the sigma algebra generated by
fi» V i. From the market driven process of funda-
mentals, Equation (5), together with intervention as
in Equation (A1), this process is clearly Markovian.
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Therefore, the conditional mean is
E{t™ (0 Z(us1ye + HOU = T(e15) - D]}
Or, taking limits
i Be (o S aye = foo) el = (1 = 7))
= p(1 — n(f)).
Similarly, the conditional variance is given by

lim E{r " fee =< fig-1ye)’ 1] = (1 = 2(f))e?. (AI)

(A2)

Next, defining b(f)=pu(l —=n(f)), and a(f)=
(1 — n(f))a?, it is straightforward to show that the
regularity conditions for non-explosion given by
Stroock and Varadhan (1979) hold. Intuitively, the
transformation (1 — n(f)) bounds the conditional
variance between zero and ¢2. Note that since this
process is a continuous approximation of a discrete
process, its diffusion limit only describes the
expected evolution conditional upon any f, and
not the actual evolution.

Proof of Proposition 3

Write the process as in Equation (A1). This implies
that the conditional mean and variance can be
written as in Equations (A2) and (A3) respectively.
In the present case, the probability of intervention
depends upon the expected evolution of market
fundamentals as described in Equation (11). There-
fore, the expected evolution of the probability of
intervention during 7 can be written as a function of
the expected evolution of market fundamentals

n(rk(n+l)‘r) = 7T(‘rkn‘r) + 7tl(tkm:)(zk(n+l)1: A km:) + O(T)’
(A4)

where o(t) collects all terms that approach zero
faster than 7. Then, substituting Equations (A4)
and (A1) into (A2) and using the fact that,
conditional upon no interventions,

(rk(n+1)t Tt km:) = (tfin+l)1: —rfn‘r)l the conditional
mean can be written

E{T_l(arz(n+l)‘t + #T)[l - n(rknr)

_n,(rknr)(arz(n+l)‘r + ﬂ‘t) + O(T)]ler}- (AS)

For the starting fundamentals level, _f,, =. k.,
taking the limit as t goes to zero gives
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li—{r(}E[T_l(rﬁn-f—l)‘t _'rf;rr)l'rQnr]zﬂ(l - 7."'(ft)) - nl(ﬁ)az'
(A6)

Similarly, substituting Equations (A4) and (A1) into
(A3), the conditional variance can be written

11_{16 E[T_l(rﬁn—H)r _'rf;n)2|‘rQnt] = (1 - n(f))az' (A7)

Therefore, define b( f) = u(1 — n(f)) — 7'(f)o?, and
a(f) = (1 —n(f))e? and substitute the result into
Equation (7) to yield the limit diffusion. To ensure
that the non-explosive conditions hold, we require
that =(f) be continuous and differentiable with
bounded first derivatives V f e (f r,j_'I). Further-
more, to guarantee that the fundamentals do not
become absorbed at the boundaries, the strict
inequalities 7'( /™) < 0 and 7'(f™) > 0 must hold.

Proof of Proposition 2

From Proposition 1, define the diffusion process in
Equation (8) as: df = a(f) dt + [b(f)]'/* dz where
a(f) = p(1l — n(f)), b(f) = 0*(1 = n(f)). Then the
Fokker-Planck forward equation provides the tran-
sitional density for f € (f, /%)

@p/30) = @S/ — Ca(NPN/Y). (AB)

For a stationary density, (dp/df) =0. Therefore,
setting the left-hand side of Equation (A8) equal to
zero and twice integrating implies:?®

p(f) =m(NICM(f) + G, (A9)

where

!

f
m(f) = b(S) exp[— | <2a(c)/b(¢»dc],

f w
M) = jf exp[— jf (2a(¢)/b(c»dc] dw,

and where C; and C, are constants of integration
that guarantee the following conditions

® ()= 0.Yf € (f.f%),

4

(i) jf pOAL = 1.

Substituting for a( f) and b( f) yields
p(f) =624 = n(MN] ™ expl(2u/o>)f)

s Al0
x [cz+cl jf eXP[—(Z#/GZ)C]dC]- (A10)
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Condition (i) implies C; = 0. Condition (ii) implies
that

,
C, = jf (expl@u/a)}/(1 — n(0)dD).

Proof of Proposition 4

From Proposition 2, define the diffusion in Equation
(12) as:

df = a(f)dt + [b(f)]? dz,
where a(f) = (1 — n(f)) — 6*(dn/d f), and b( f) =

6%(1 — n(f)). Then, following the same steps as in
Proposition 2 through (A9) and substituting for

a(f) b(f)
p(f) = [6*(1 = n( M exp{@u/aIC, + €,

f All
< Jf expl—2u/a)(1 — (@) dg. MY

Again, Condition (i) implies C; = 0. Condition (ii)
implies that

f
- L (exp{u/a)H(1 — (D)) dO).

ENDNOTES

1. For another solution to this problem, see also Smith
(1991).

2. See Froot and Obstfeld (1991b).

3. On exchange rate target zones, see Froot and Obstfeld
(1991b), Flood and Garber (1989), and Krugman
(1991), among many others. On the US policy of
targeting interest rates, see Cook and Hahn (1989).

. See Moggridge (1972) and Yeager (1976).

. Studies that consider processes for fundamentals
other than Brownian motion include Delgado and
Dumas (1991) and Froot and Obstfeld (1991a).

6. Svensson (1991) pointed out the implied asymptotic
distribution of exchange rates within target bands.
Subsequently, Bertola and Caballero (1992) and Flood
et al. (1991) have demonstrated that this implication is
counterfactual in the case of the European Monetary
System.

7. See Mussa (1982), for example.

8. See, for example, Flood and Garber (1983) and Froot
and Obstfeld (1991a).

9. See, for example, the discussion in Yeager (1976) and
Moggridge (1972).

10. See for example Karlin and Taylor (1981).

U1 >
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11. In other words, I assume that the boundary, f < £, is
a reflecting barrier, but only for this comparison.

12. Clearly, as the truncation values for n(f) become
nearer one, stabilization occurs more frequently and
hence more of the mass becomes concentrated near
the upper boundary. Results based upon a uniform
distribution gave qualitatively similar results, affect-
ing only the degree of curvature of the fundamentals
distribution.

13. If the probability increases from f sufficiently quickly,
it is possible to generate some perverse cases where
the intra-regime intervention solution crosses the
standard solution near f. Even in this case, however,
the intra-regime intervention solution approaches x*
from below the standard solution as the intuition in
the text describes. This perverse case disappears as
the lower bound f goes to —oo, however.

14. This section draws on Lewis (1995).

15. For evidence of this behaviour within the French
franc/Deutschmark rate, see Edison and Kaminsky
(1990).

16. An example of such a transformation is b = (f —fT)?
which is clearly differentiable everywhere and has a
derlvatlve that preserves the sign of the argument,

f-

17. Clear%y dn/df = (d=/db)(db/df ) where dn/df > 0 for
f>f, anddn/df<0forf<f

18. Although this probability is not differentiable at fT,
this example was constructed to allow an instructive
comparison across probability functions.

19. As in the switch to a fixed rate case, it is possible to
generate perverse cases when the probability changes
sufficiently quickly at the target level. In this case, the
intra-regime intervention solution above f T may Cross
and lie above the standard solution near xT. However,
the intra-regime solution later crosses and approaches
the boundary point, /7, from below.

20. For a description of this empirical evidence, see Flood
et al. (1991).

21. For example, see the discussion on Moggridge (1972).

22. For example, see Nelson (1990).

23. For example, see Karlin and Taylor (1981), pp. 219-
221, or Wong (1964).
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