LMJ/PETAL laser facility: Overview and opportunities for laboratory astrophysics
Introduction The purpose of this work is to investigate the effects of activating fluxes and welding parameter to the penetration and depth-to-width ratio (DWR) of weld bead of Inconel 718 alloy welds in the tungsten inert gas (TIG) welding process. In the activating flux with TIG (A-TIG) welding process, the single-component fluxes used in the [...]
Read More
Long duration X-ray drive hydrodynamics experiments relevant for laboratory astrophysics
Introduction The purpose of this work is to investigate the effects of activating fluxes and welding parameter to the penetration and depth-to-width ratio (DWR) of weld bead of Inconel 718 alloy welds in the tungsten inert gas (TIG) welding process. In the activating flux with TIG (A-TIG) welding process, the single-component fluxes used in the [...]
Read More
Relativistic plasma astrophysics with intense lasers
Introduction The purpose of this work is to investigate the effects of activating fluxes and welding parameter to the penetration and depth-to-width ratio (DWR) of weld bead of Inconel 718 alloy welds in the tungsten inert gas (TIG) welding process. In the activating flux with TIG (A-TIG) welding process, the single-component fluxes used in the [...]
Read More
Accelerator Mass Spectrometry at the Nuclear Science Laboratory: Applications to Nuclear Astrophysics
Introduction The purpose of this work is to investigate the effects of activating fluxes and welding parameter to the penetration and depth-to-width ratio (DWR) of weld bead of Inconel 718 alloy welds in the tungsten inert gas (TIG) welding process. In the activating flux with TIG (A-TIG) welding process, the single-component fluxes used in the [...]
Read More
The γ-ray spectrometer HORUS and its applications for nuclear astrophysics
Introduction The purpose of this work is to investigate the effects of activating fluxes and welding parameter to the penetration and depth-to-width ratio (DWR) of weld bead of Inconel 718 alloy welds in the tungsten inert gas (TIG) welding process. In the activating flux with TIG (A-TIG) welding process, the single-component fluxes used in the [...]
Read More
Neutrino Physics and Astrophysics at Joint Institute for Nuclear Research
Introduction The purpose of this work is to investigate the effects of activating fluxes and welding parameter to the penetration and depth-to-width ratio (DWR) of weld bead of Inconel 718 alloy welds in the tungsten inert gas (TIG) welding process. In the activating flux with TIG (A-TIG) welding process, the single-component fluxes used in the [...]
Read More
Hot topics of X-ray Astrophysics from past and future missions
Introduction The purpose of this work is to investigate the effects of activating fluxes and welding parameter to the penetration and depth-to-width ratio (DWR) of weld bead of Inconel 718 alloy welds in the tungsten inert gas (TIG) welding process. In the activating flux with TIG (A-TIG) welding process, the single-component fluxes used in the [...]
Read More
The INTErnational Gamma Ray Astrophysics Laboratory: INTEGRAL Highlights
Introduction The purpose of this work is to investigate the effects of activating fluxes and welding parameter to the penetration and depth-to-width ratio (DWR) of weld bead of Inconel 718 alloy welds in the tungsten inert gas (TIG) welding process. In the activating flux with TIG (A-TIG) welding process, the single-component fluxes used in the [...]
Read More
INTEGRAL highlights in the high energy astrophysics panorama
Introduction The purpose of this work is to investigate the effects of activating fluxes and welding parameter to the penetration and depth-to-width ratio (DWR) of weld bead of Inconel 718 alloy welds in the tungsten inert gas (TIG) welding process. In the activating flux with TIG (A-TIG) welding process, the single-component fluxes used in the [...]
Read More